MANE News and Events

Announcements

Lithium Dendrites

Rechargeable lithium-ion, the dominant battery technology for portable electronics, is increasingly becoming the battery of choice for electric-vehicle and electric-grid energy-storage applications.

Nuclear engineering expert George Xu, the Edward E. Hood Jr. Endowed Chair of Engineering at Rensselaer Polytechnic Institute, has been selected to receive the Distinguished Scientific Achievement Award of the Health Physics Society. The award will be given during the 2018 Annual Meeting in Cleveland, Ohio, July 15-19 at the Huntington Cleveland Convention Center.

 Li (Emily) Liu, associate professor of nuclear engineering and engineering physics in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer Polytechnic Institute, has been selected by the U.S. Department of Energy Solar Energy Technologies Office (SETO) to receive a $1.8 million award to study high-temperature molten-salt properties and corrosion mechanisms.

Institute News

Artificial intelligence and machine learning are revolutionizing the ways in which we live, work, and spend our free time, from the smart devices in our homes to the tasks our phones can carry out. This transformation is being made possible by a surge in data and computing power that can help machine learning algorithms not only perform device-specific tasks, but also help them gain intelligence or knowledge over time.
TROY, N.Y. — Optoelectronic materials that are capable of converting the energy of light into electricity, and electricity into light, have promising applications as light-emitting, energy-harvesting, and sensing technologies. However, devices made of these materials are often plagued by inefficiency, losing significant useful energy as heat. To break the current limits of efficiency, new principles of light-electricity conversion are needed.
The future of quantum computing may depend on the further development and understanding of semiconductor materials known as transition metal dichalcogenides (TMDCs). These atomically thin materials develop unique and useful electrical, mechanical, and optical properties when they are manipulated by pressure, light, or temperature.
More strategic and coordinated travel restrictions likely could have reduced the spread of COVID-19 in the early stages of the pandemic. That’s according to new research published in Communications Physics. This finding stems from new modeling conducted by a multidisciplinary team of scientists and engineers at Rensselaer Polytechnic Institute.
The COVID-19 pandemic has exacerbated inequities in urban freight and the delivery of goods. This misalignment in the supply chain is perpetuating food insecurity, especially in areas where grocery store access is limited or non-existent and for those who have limited access to e-commerce.
Heart disease and cancer are the leading causes of death in the United States, and it’s increasingly understood that they share common risk factors, including tobacco use, diet, blood pressure, and obesity. Thus, a diagnostic tool that could screen for cardiovascular disease while a patient is already being screened for cancer has the potential to expedite a diagnosis, accelerate treatment, and improve patient outcomes. 
The way that air moves over, around, or under an aircraft can greatly affect its aerodynamics. When air flow separates from the wings of a plane, for instance, the change in pressure on the vehicle can reduce pilot control or cause the aircraft to stall out. The development of more effective air flow control techniques depends on a better understanding of flow separation that occurs around aircraft of different shapes and sizes.
Fouling is a natural phenomenon that describes the tendency of proteins in water to adhere to nearby surfaces. It’s what causes unwanted deposits of protein to form during some food production or on biomedical implants, causing them to fail. Researchers at Rensselaer Polytechnic Institute are harnessing this process, which is typically considered a persistent challenge, to develop a versatile and accessible approach for modifying solid surfaces.
The surface of a pristine, transparent freshwater lake may not reveal to ecologists the reality of what’s occurring in its depths. Evaluating the cumulative effects of climate change, pollutants, acidification, or invasive species requires more precise methods. But even the most dynamic and sensitive sensors commonly used today are not always able to tell researchers what they need to know.
A novel form of polymerized estrogen developed at Rensselaer Polytechnic Institute can provide neuroprotection when implanted at the site of a spinal cord injury — preventing further damage. This promising result, found in a preclinical model, was recently published in ACS Chemical Neuroscience, and it lays the groundwork for further advancement of this new biomaterial.